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ROUNDING ERROR BOUNDS 

BY PERTURBATION - CONDITION ANALYSIS 

By Donald J. Rose 

Electronics Research Center 

I. INTRODUCTION 

The advent of the high-speed digital computer has given numerical 
analysis a youthful vitality. In addition to the new activity resulting merely 
from the speed of the modern computer, there is also new numerical anal­
ysis  resulting from the digital computer's inherent f l aw -computation in finite 
precision arithmetic. Who would guess that rounding in the eighth place 
might yield a result not even accurate in the first  place? 

This Technical Note discusses the problem of finding bounds to the e r ­
ror generated by roundoff. The technique used is perturbation-condition 
analysis defined in section 111. Section I1 sets  the stage for the subsequent

II I t  I 1discussion and discusses the t e rms  "forward analysis, backward analysis,
I 1  1 1  1 1inherent e r ror ,  and "propagated error .  Section I11 then defines condition 
and the meaning and advantages of perturbatioh-condition analysis. The ex­
amples in this section a re  all due to J. H. Wilkinson (with the exception of 
the Bauer-Fike Theorem), and the attempt to  de4ine condition a s  done in 
equation (1) is essentially an attempt to state formally what Wilkinson 
achieves when he does a perturbation theory. The justification for abstract­
ing a definition in this way is the obvious success of Wilkinson's analyses.
The latter p a r t  of section I11 discusses conditioning and the possible ways
this may be done. 

Section IV is concerned with conditioning for the eigenvalue problem
and discusses an algorithm developed by E. E. Osborne which is conjectured 
to be of use in conditioning matrices for eigenvalue computations. Results of 
numerical experiments by the author a re  given to  evaluate the conj,ecture. 



11. PRELIMINARY NOTIONS 

Our task is to approximate some function F by computing with an al­
gorithm A; we write Y = F(X) and y = A(X) where X is a data vector and Y 
and are  the solution vector and the approximating vector, respectively. 
Ultimately, we w i l l  be concerned with IIY-YII where I /  11 is a norm on the 
vector space containing Y and y. Given X, we assume that A(X) is computed 
by a machine in a finite number of simple arithmetic calculations (addition, 
subtraction, multiplication, division) using finite precision; that is, each ma­
chine number is essentially represented by a finite number of digits in some 
base (usually 2). The reader is assumed to be familiar with finite precision 
arithmetic and the rounding e r r o r s  present in simple arithmetic calculations, 
although no specific knowledge is necessary (see ref. 1, pp. 1-33 for a 
complete discussion). 

Let us  examine possible sources of the e r ro r  E = IIY-YH. Of primary 
importance is the e r ro r  due to  the propagation of rounding e r r o r s  made at 
each simple arithmetic calculation while executing the algorithm A. We de­
fine this accumulation of e r ro r  due to roundoff simply a s  propagated error .  
A second type of e r ro r  may ar ise  because the vector of data X cannot be rep­
resented exactly as  finite preciLion machine numbers. In this case, we ac­
tually have = A(X) instead of Y = A(X) where xis the machine representa­
tion of X. Having noted this distinction, we w i l l  usually suppress it and write 

= A(X) since this w i l l  cause no confusion. We can place this second type 
of e r ro r  in a more general setting. We define inherent e r r c r  a s  the e r r o r  o r  
uncertainty in X present before applying the algorithm A. For example, X 
may represent physical measurements with a stated uncertainty or, a s  above, 
X may not be representable exactly in the machine. 

There is an ambiguity in the distinction between propagated e r ro r  and 
inherent e r ro r  in the following sense. Suppose we compose two algorithms, 
A and B, and wish to  compute (BoA)X = B(A(X)). Then, do we consider the 
propagated e r ro r  in A(X) a s  inherent e r ro r  to the algorithm B, or do we con­
sider the inherent e r ro r  in X as the only inherent e r ro r  and propagated e r ro r  
as the total accumulated roundoff e r r o r ?  We note that although the distinction 
between inherent e r ro r  and propagated e r ro r  is real, i t  is empty if we cannot 
compare their importance in the expression of the e r r o r  E = IIY-YII . We re­
turn to this question later. 

In dealing with the effects,of roundoff e r ror ,  there a re  two techniques 
of analysis. One approach seeks to compare the results of the computation 
A(X) to F(X) by bounding the e r ro r  at each simple arithmetic calculation to  
obtain a cumulative bound for IIY-ull. This approach is known as  forward 
analysis and, in general, such an analysis of a very complicated algorithm 
is exceedingly difficult and may give useless (far too pessimistic) e r ro r  
bounds. A good example of the analysis necessary in such an approach can 
be found in Todd's paper [ 2 ]  which describes the forward analysis fo r  an 
algorithm which finds square roots by Newton's method in fixed point arith­
metic. 
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The other technique, developed by J. H. Wilkinson ( [l], [31 ), is to  
show that the computed solution is the exact solution of some perturbation of 
the data; i. e., that 

-
Y = A(X) = F(X+P), 

where P is a vector of perturbations belonging to the same space a s  X itself. 
The goal of this technique, called backward analysis, is to bound 1) PI1 ;hence, 

11by backward analysis we consider roundoff e r r o r  simply as equivalent" to a 
perturbation P on X. In general, P depends on the algorithm A and the vector 
X; to  make this dependence explicit, we w i l l  sometimes denote P by PA, X Or 

Px. We note that i f  we desire a bound for the e r ror ,  

E = IIY-UII = 1 1  F(X)-F(X+P)II, 

w e  need a perturbation theory for the function F; that is, we need information 
about the changes in F due to changes in the vector X. 

If we are  primarily interested in E = IIY-9 11, it may appear that the 
How -backward analysis-perturbation theory approach is the long way around. 

ever, there a re  several advantages to such an approach. Firs t ,  a s  Wilkinson 
has repeatedly shown, the approach is quite successful and easier than for­
ward analysis. Secondly, a perturbation theory for the function F is desirable 
for analyzing the effects of inherent e r ror ;  a perturbation theory gives us an 
indication of how sensitive the problem F is with respect to small changes in 
X. 	 Finally, since backward analysis casts  propagated roundoff e r r o r  in the 
form of inherent e r r o r  (because A(X) = F(X+P)), w e  a r e  able to make a com­
parison of the sources of e r ror .  Fo r  example, i f  we find the bound on )IP II 
to be much smaller than the uncertainty bounds on X, we are  probably pre­
pared to accept A(X) as a satisfactory approximation to F(X). However, i f  
the bound on IIPII is greater than the uncertainty5mits on X, the results 
may be regarded a s  dubious. Note that we a re  able to make these later state­
ments without the use of perturbation theory. 
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111. CONDITION AND CONDITIONING 

Definitions 

Intuitively, the condition of the data vector X with respect to a function 
F would indicate the amount F could change, given a perturbation in X. We 
note the dependence on X and F and speak of the condition of X with respect 
to the problem F (e. g., the condition of the matrix A with respect to  the 
eigenvalue problem). Ideally, small changes in X produce small changes in 
the solution F(X). If this is not the case, that is, if  relatively small changes 
in  X produce large changes in F, we say that X is ill conditioned with respect 
to  F. -More precisely, we define ,a condition as a function, CF: X 4 (0, Q) ) a  

such that 

where G( IIPII ) is a continuous, monotonically increasing function of IlPll such 
that G(0) = 0 and G(1) = Q ,  a specified constant. (G might be a bound on IIPII.) 
Given G, we note that CF is not unique because any C' F such that CIF(X) 

CF(X) for all X (in some set under consideration) is also a condition. When 

we want to consider a condition with respect to a relative e r ror ,  we write 
our defining relation a s  

when this makes sense. Naturally, in equation (1) and (2) we want a condi­
tion such that the inequality (bound) is a s  sharp a s  possible, and sometimes 
we may be able to write equation (1) (and similarly equation (2))  in the form: 

where h <  1. 

Essentially by finding a condition function CF a s  expressed in equations 

(1)through (3), we have solved the perturbation theory problem for the prob­
lem F. Corresponding to our intuition, we have defined a condition function 
to give an indication of the extent to which uncertainties may be propagated by 
F at the point X. W e  w i l l  call the analysis which results in equations (1) 
through (3) erturbation-condition analysis. Practically, we de s i re  a func ­
tion CF such-=-- that C X can be computed with relative ease. 

John R. Rice, in his paper, A Theory of Condition [4] ,  defines condi­
tion in a similar but more general way. Rice considers a mapping M from a 
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metric space (Xl, P 1 into a metric space (X2,p 2). In addition t o  the metric, 

each metric space possesses a size function di (i = 1, 2) which is a non­
negative real valued function on the elements of Xi. Schematically, we have 

di : Xi - (0,m). 

Note that an example of a size function would be a norm. 

In the set Xi, the sphere about xo of radius 6 is defined by Si(xo, 6 ) = 

{ x I 1
.(x, x 

0
) < 6 } and the relative sphere is defined by Sir (xo, 6 ) = 

{ x I p $x, xo) <6 di(xo) } . Using these notions, Rice defines absolute and 
relative 6 -conditions. The idea is as follows. Consider a sphere S1 of 
radius 6 about xo in the set X1. Under the transformation M, this sphere is 
carried into some subset of X2, not necessarily a sphere, about M(xo). How­
ever, suppose we consider a family of spheres about M(xo) of radius r 6 
( 6 fixed, 0 c Q a 1; that is, the family of sets  

S2( Q) = { x I P 2(x, M(xo)) u 6). 

We expect that as u increases, there w i l l  eventually be some Q '  such that the 
sphere S2( 0 ' )  w i l l  be just large enough to contain the image of the original 
sphere S1; u then gives us  a measure of how perturbations in X 1 (of magni­

tude 5 6 ) are  propagated by M at xo. If we had considered relative spheres, 

would be a measure of how I t  relative" perturbations in X1 a re  propagated. 

Hence, Rice gives the following definitions: 

1. The absolute and relative 6 conditions of the transformation 

M : X1 -X2 at the point xo e X1 are,  respectively: 
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2. 	 The asymptotic absolute and relative conditions of M : X1- X2 

are, respectively: 

Y (M, xo) = l im Y (M, x0). 
6 3 0  

The asymptotic condition is simply called the condition. The condition 
thus defined need not exist because AL and Y 6 may oscillate as 6 -.c 0. If the 

condition does exist, however, it is unique because l imits a r e  unique. 

If the metric spaces (xi, P 
1
.) are endowed with differentiable structure, 

Rice proves that the absolute and relative conditions exist. The essential r e ­
quirement s a re  that: 

1. X 1 and X2 be differentiable manifolds 

2. p .(x, y) be differentiable functions of x and y
1 


3. M be a differentiable mapping; M : XI- X2 

4. There exist size functions di(x) which are non-negative. 

The interested reader unfamiliar with the precise meaning of these require­
ments w i l l  find the reference given in Rice's paper [4]useful. We note that 
these differentiability requirements a re  restrictive; verifying the requirements
for a very complicated mapping (perhaps one that results from composite map­
pings) might prove to  be an impossible burden. 

We  now return to  equations (1) through (3) and continue the discussion of 
e r r o r  bounds via perturbation-condition analysis; we w i l l  search for a condi­
tion function CF by careful perturbation analysis. We shall not be dismayed 
by the fact that CF is not unique; our purpose is simply to  find some condition 
function (hopefully computable) that w i l l  produce reasonably tight bounds which 
w i l l  be useful in the ultimate e r r o r  analysis. 

Nothing has been said about the approximating algorithm A throughout
the discussion of equations (1) through (3). This is because it is desirable to  
have a perturbation-condition analysis which is independent of the approxi­
mating algorithm. The influence of the particular algorithm A comes via 
backward analysis. Consider again the problem of propagated roundoff e r r o r  
in computing A(X). Writing Y = A(X), we a re  led by backward analysis to 
consider : 
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P = A(X) = F(X+PA,x) 

and the e r ror ,  

supposing also that we have a perturbation-condition analysis. In order to 
evaluate E which gives the propagated e r ro r  bound, we must evaluate 
G( IIP, x I I ) ,  and the algorithm A (and X) determines G( IIP

A, x 11 ). Thus, we 
desire 'an algorithm A for  which G( IIP/I)is I !  small. I 1  If G( 11 PA,x l l )  is large 

(how large would be determined by the particular problem), we say that the 
algorithm A is unstable at X. If 

(equality not holding for all X) for  some other algorithm B, then B is more 
stable than A; in choosing the approximating algorithm, we desire a s  stable 
an algorithm a s  possible. We see that a backward analysis of an algorithm
gives us insight about its stability and also that the condition of F at X and 
the stability of A at X essentially determine the propagated e r ro r  bound. 

Examples 

We now proceed to give some examples of perturbation-condition anal­
ysis. Essentially, we follow Wilkinson's analyses given in [l] and [ 3 ] .  

Roots of Polynomials. -- Consider the space of polynomials of degree.- _ _  
n and ret 

p(x) = Z 
n 

a.x i , an # 0. 
i=1 1 

Suppose that the rth zero of p(x) is simple and that the problem is to find 
xr'* xr = Fr(p). Let 

be a perturbation of the polynomial p(x) where c is a scaler and xr + h = 

Fr(P+'q); w e  w a n t  a bound /hl = 1Fr(p)-Fr(p+ cq)I . Since xr + h is a root 
of [ p+aq](x), w e  have 
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hk 
= z -hk p(k)(xr) + e z - q(k)(xr),

k= l  k! k=O k! 

using that fact that p(x,) = 0. Us ing  the algebraic theory of functions (see 
ref. [ 31, pp. 64-66, we may write the following expansions: 

r r j=1 J 
(7) 

since xr is simple. If xr has multiplicity m, we have 

Equations (7) and (8) a re  convergent for sufficiently small e and hence only 
make sense for  e < some e o .  Substituting the expansion for h in equation 

(7) into equation (61, we obtain: 

Since this equality holds for all e e o ,  the coefficient of e must vanish; we 

obtain 

so 

Finally, substituting equation (10) into equation (7) gives 
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for E small enough. Hence, 

showing that we may consider I p(l)(xr) 1-l as a condition. If xr is a zero of 
multiplicity m, the algebraic theory of functions gives the similar result that 

for E sufficiently small. 

Linear Equations. -- Let the matrix A be in the space of nxn matrices 
and the vectors x and b be of dimension n. Given A and b, the problem is to 
find x satisfying Ax = b. Supposing A to be non-singular, we know 
x = A-lb. For fixed A, consider a perturbation in b yielding the equation 

A(x+x') = b + b'. (12) 

Since Ax = b, we have immediately that Ax' = b' or x1 = A-lb'. Thus, 

assuming the matrix norm is consistent* with the vector norm. Using 
IlbI( ,< 1 1  A 11 11 x 11, we obtain the relative e r r o r  bound, 

showing that we may consider 

*A matrix norm is consistent with a vector norm if (IAx 11 11 A 11 11 x 1 )  for all
A and x. 
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a condition. 

Now let b be fixed and consider a perturbation E on A, giving the equa­
tion, 

(A+E)(x+xl)= b. 

From Ax = b, we have 

(A+E)x' = -EX. 

Although we have assumed that A is non-singular, 
l e s s  E is restricted. Writing 

(A+E) = A(I+A-'E), 

it follows that A + E is non-singular i f  

(expand (I + A-lE1-l in  an infinite matrix series. 
(18), we see that 

(16) 


(17) 

A + E may be singular un­

(18) 


Using equations (17) and 

*Proof: It suffices to show I + A'lE is non-singular, which is true i f  I + A"E 
has non-zero eigenvalues. Letting X and y be an eigenvalue and eigenvector of 

A-lE, respectively, we have 

for a pair of consistent norms. This implies that 1 A I S 11 A-'E 11 < 1; 

hence, the eigenvalues of I + A-lE are  all non-zero. 

Q. E. D. 
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and from equation (191, 

assuming further that llA-ll( IlEII .c 112. Finally, 

giving again the condition CL. Note that we have assumed that 11111 = 1 (I, the
* 

identity matrix) to obtain equation (19). For example, if  IIxll = (x x)1 / 2
* 

(x the conjugate transpose of x) and 

* 
( hi(A A) the ith eigenvalue of A*A), then 11 111 = 1 and IlAxl ,< 11 All 2 1 1  x I I  29 

so equations (14) and (22) a re  valid. If we wish to consider a total perturba­
tion, (A+E)(x+x') = b + b', on the system, we can derive 

llxlll 2 b'll 2 IIE I1 2 

llxll 2 

if  1lA-l 1 1  IIEIl 1 / 2  by a similar analysis. 

Consider the system of linear equations given by 

H x = e7 (24)7 

where 
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and 

Te7 = (0, 0, 0, 0, 0, O , 1 )  . 
We consider the perturbed problem where the h.. are represented to 8 decimal 

1J 

digits of accuracy (one floating point word in an IBM 7094). The computed 
solution using a Gaussian elimination scheme and the exact solution, which is 
the 7th column of Hi1, are compared in Table I. The exact solution is given 
by the formula (ref. 5 1 , p. 23): 

TABLE I 
H x = e 77 

-
7 

Exact Solution Computed Solution 
~-

12012 17793.570 
-504504 -732827.38 
5045040 7225442.5 

-201 80160 -28597667. 
37837800 53182954. 

-33297264 -464962 95. 
11099088 15416434. 

--. 

The matrix (h..):h.. = (i+j-l)-' is known as the Hilbert matrix and a 
1J 1J 

finite segment of the matrix, i, j = 1, . . . , n, is ill-conditioned with respect 
to the inversion (linear equations) problem. Since a finite Hilbert segment 
is a symmetric matrix, equation (15) reduces to 

1 2  


I 



if  w e  use the 1 1  [ I 2  norm defined previously. For the Hilbert segment of order 
n, log, CL - kn where 11 -11 means asymptotically equals and k 3.5 (ref. 

[ 51, p. 23). Hence, the inaccurate results shown in Table I a re  not unex­
pected. 

The Eigenvalue Problem. -- A is again a member of the space of nxn 
matrices. The problem is to find the n numbers X i, such that Ax = hix for 
some x in the linear space of dimension n over the complex field. We know 
this is equivalent t o  finding the roots of the characteristic polynomial of 
degree n defined by 

det(A-XI) = 0. 

W e  w i l l  consider two different perturbation analyses. 

1. Bauer-Fike Theorem 

Suppose A is a diagonalizable matrix. Then there exists a matrix C 

such that C-lAC = A where A is a diagonal matrix of eigenvalues. Let 
be an eigenvalue of A + e B, B arbitrary, and e a positive scaler. The 

matrix (A+e B- Xe I) is then singular and 

Since the determinant of the matrix on the left side vanishes, so must the 
determinant on the right. Suppose first that it is not the case that A,  = X i  

for some i. Then, from equation (271, we have: 

Since the detei-minant on the left side vanishes, the determinant of 
[ I+ c ( A - A ,  I)-1C-1BC 1 vanishes by our supposition. By the discussion as­

sociated with equation (19), 

since the 11 1 1 2  norm is consistent. Thus, 
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Clearly, 

so 

Finally, if it were the case that = A for  some i, then equation (29) holds 

trivially. Thus, we have proved the following: 

Theorem (Bauer, Fike): 

Let A be a diagonalizable matrix with C- lAC = A . Then the eigenvalues
of A + cB are contained in the union of the discs 

where the matrix norm is consistent with a norm on the eigenvectors and is 
such that 

for any diagonal matrix. 

The proof we gave used the 11 norm f o r  convenience. A glance back 
is sufficient to see that it holds for other norms fulfilling the stated conditions. 
It also holds for the Euclidean norm: 

Notice that we do not assume that c is small in this analysis. However, 
since eigenvalues a re  continuous functions of the elements of A, we have the 
following extension of the theorem: 

I�m of the discs 1 p-Ai 1s llC-lll /IC11 E llBI/ form a connected set disjoint 
from the other discs, then the union of these m discs contains exactly m eigen­
values of A + e B. 
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Hence, i f  L is small (consider B normalized 
more precise e r r o r  bounds; how small e must be, 

The proof shows that given an eigenvalue X 
e 

eigenvalue of A (say, Xi) ,  such that 

so b.. S l), we obtain 
1J 


w e  don't know a priori. 

of A + e k ,  there exists an 

Equation (31) is not exactly in the form of equation (1);letting Fi(A) 
be the ith eigenvalue, w e  have, in general, 

because Fi(A+ e B) can be contained in any of the discs and none of the discs 
may form a connected set  disjoint from the remaining discs. 

Equation (32) shows that we may consider the quantity CE(A) = IIC-lll Ilcl12 
a condition for  the eigenvalue problem. Since C is only determined up to 
multiplication by a non-singular diagonal matrix (because (CD)-'A(CD) = A ), 
we could consider 

C;E(A) = g. 1.b. 1 IIC-lI1 211C112 I C-lAC = A 1 
as a condition. 

2. Wilkinson Perturbation Theorv 

We now give a brief account of Wilkinson's perturbation theory for the 
eigenvalue problem. 

Let X i  be an eigenvalue of A. Then there is a vector x. such that Ax. = 
1 1 .  


m m m 
X.X.
1 1  

and a vector y.'
1 

such that y:A = y.'
1 

Xi. We normalize so that 

Let 
m
1 si = y . x - (33)
1 i' 

15 




then 

I Si I = y. 	Tx.1 5 IIyiT 11, 1 1  xi 11, = 1 (Cauchy's inequality),
1 1  

and hence, 

When A has simple eigenvalues, 1/1si I is uniquely determined for each i. 
When this is not the case l/lsil may not be uniquely determined for X i  

(because there may be multiple eigenvectors associated with X 
1
.), but we can 

Tchoose some y. x. corresponding to  i'1 1  


Let A be diagonalizable and consider again the perturbed problem A 1- eB 
(where B is normalized so that b i j 5  1). Wilkinson ( [ S I ,  p. 69) has shown 
that the perturbation in the eigenvalue Xi of A due to  the perturbation t B  in A 
satisfies the relation, 

k t
I x i ( + X i l  =-

Is. 1 + O ( e  2 ), (34)  
1 

when e is sufficiently small and Xi is a simple eigenvalue of A, Here, k dn, 
n the order of A. For multiple eigenvalues of a diagonalizabIe matrix and 
for  eigenvalues of matrices which a re  not diagonalizable, I h i( e )  - A i l  still 
depends inversely on Isi 1 but the bound is not so good as in equation (34)  

(see ref. [ 3 ] ,  pp. 72-81). 

Equation (34) indicates that we may consider 1/ 1 si/ a s  a condition for 

X i* The numbers 1/ I s.1 are  relatively easy to  compute because they a re
1 

calculated easily f rom the eigenvectors. In fact, the quantities s.
1 

are  invar­
iant under unitary similarity transformations; * thus, i f  one finds the eigen­
values by upper triangularizing by unitary transformations, finding the eigen­
vectors is essentially only a matter of back-solving the triangular system of 
equations. 

*Similarity transformation using a unitary matrix; i. e., a matrix U such that
u*u = I. 
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There a re  some relations between the condition number 1/ I si I and the 

condition number \IC-' 11 11 Cll of equation (32).  Wilkinson shows ( [3] , 
pp. 88, 89) that 

and 

These examples of perturbation-condition analysis show that the pri­
mary restriction of the analysis is that we must usually assume that IIPII in 
equation (1) is small, but we don't really know how small. This w a s  clearly 
the case in the polynomial problem (1) and in Wilkinson's perturbation theory 
giving r ise  to the quantities 1/ I sil . It w a s  also true in the linear equation 

problem because we were required to assume that IIA 
-111 IIEll < 1 / 2 .  (This 

was somewhat of a convenience but we at least had to  assume that llA-lEll <1 
to obtain a bound at all. ) We placed no restrictions on Ilb'II to  derive equa­
tion (141, but Wilkinson points out that equation (14) can be grossly pessimis­
tic when llAl1 llA-lll is large. The bound given by the Bauer-Fike theorem 
expressed by equation (32) w a s  independent of the size of e llBll, but we point­
ed out that an extension of the theorem gives better bounds if is small 
enough. It may happen that the required smallness of IIPII or llPll/ 11 X 11 
depends inversely on C(X); for  example, in the restriction that 

in the linear equations problem. Thus, if C(X) is so large that our perturba­
tion theory breaks down, we no longer know what C(X) precisely indicates. 

Conditioning 

Let u s  return again to  the general setting and consider the function F 
and the algorithm A used to  approximate F. We suppose we have a perturba­
tion-condition theory for F and a backward analysis of the algorithm A. 
Given the data vector X, we are  attempting to  find a bound on the e r r o r  E by 

E = IIY-yII 6 CF(X) G( l l p ~~ 1 1 ) .  
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By the indifference class  determined by X, we mean a set of vectors I (in the 
same space a s  X) such that i f  XI is in I, then A(X') and A(X) a re  considered, 
a priori, equally good approximations. In a sense, the indifference class may 
be regarded as a class  of input candidates. We might then think of using some 
XI in the indifference class determined by X such that 

(or preferably using XI such that CF(X1) G(ll PA, 11) was minimum over I 
if such an XI is possible to find) in order to  attain a better bound. The 
process of choosing an XI such that equation (37)holds w i l l  be called condi­
tioning. Three possibilities come to mind: 

1. Consider the indifference class determined by I = (XIIF(X) = 
F(X1)} and T a transformation on the space containing X such that T(X) 
and X are  in I. Then, given X, we wish to  choose such a T(X) that 
equation (37)holds. 

2. The indifference class is the set I = { XI1 11 X-XI } for some c . 
Here, e might be a measure of the inherent uncertainty in X; we wish 
to choose an XI I such that equation (37)holds. 

3. 	 The indifference class is the set I = {XIS liX-X1 11 << min( ilPA 

11 PA, 11) } . In this case, we seek the relation (equation (37))by pe r ­

turbing X to such a slight degree that the change is much smaller than 
the backward analysis perturbation generated by rounding errors .  In 
the case that X comes from measured data with uncertainty, we as ­
sume (3) is merely a subcase of (2). 

F o r  the remainder of this paper, we w i l l  investigate conditioning for 
the eigenvalue problem using the framework of (1) above. Given X, we w i l l  
determine a diagonal matrix D with entries di and the similarity transforma­
tion, DXD- l=  XI. Clearly, F(X) = F(X1) if the similarity transformation is 
done exactly. To ensure this, the entries d.

1 
of the diagonal matrix are  all of 

the form 2t (t integer). We note that diagonal similarity transformations a re  
simple, non-trivial similarity transformations; (DXD-l).

Y
. = di X. ./dj. In the 

1J 
next section, we discuss how D is computed and the conjecture that such con­
ditioning leads to smaller e r r o r  bounds and, indeed, to more accurate com­
puted r e  sults. 
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IV. CONDITIONING BY NORM REDUCTION 

In his paper [ref. 61, On Pre-Conditioning of Matrices, E. E. Osborne 
suggests that if the eigenvalues of a matrix a re  small, relative to its norm 

( II II 2 
norm), then the eigenvalue calculation may be ill-conditioned. Thus, 

Osborne develops an algorithm which reduces the Euclidean norm to its 
g. 1. b.&by a sequence (possibly infinite) of diagonal similarity transforma­
tions. I' B. N. Parlett  [ref. 71, who has written an eigenvalue routine based 
on his  research of the QR algorithm, has also conjectured that norm reduc­
tion may improve the computation and gives the user  the option of calling a 
norm reduction subroutine (slightly different from Osborne' s )  before using
the QR algorithm. We w i l l  examine the conjecture that norm reduction can 
be used to condition matrices for the eigenvalue problem and present some 
results from numerical examples using Osborne' s algorithm and Parlett '  s 
eigenvalue routine. 

The Algorithm 

We consider reducing the Euclidean norm of the matrix A, 

by diagonal similarity transformations, DAD-l. Let Di be a diagonal matrix 
whose entries a re  d . = l  for j # i  and di#l. The effect of using such a matrix in

J 
a similarity transformation is multiplication of the ithrow of the matrix A by 
di and multiplication of the ithcolumn of A by l / d i  (the a.. entry is invariant).11 


Let the quantities R;2 and C;2 be defined on A by 
I I 

1 

I t E ,  a substantial reduction of the 11 11, 
norm w i l l  yield a reduction of the 11 1 1 2  norm. 

19 




and 

c f =  J l a .J i  1 ”  (40) 

j#i 


Using the matrix Di defined &wovein a similar ty transformation leads us to  

the quantity: 

2 2  2 2Q(di) = diRi + Ci /di. (41) 

If we choose di in such a way that Q(d.) C Q(l),* we w i l l  have reduced the
1 

Euclidean norm. Clearly, Q w i l l  be minimized when 

then 

Q(di) = 2CiRi (43) 

and 

2 2
Q(1)- Q(di) = R.1 + C2i - 2C.R. = (�ti-ci)30. (44)1 1  


Hence, the transformation reduces the norm. This process is repeated using 
matrices D.

1 
for i = 1, . . . , n, which is a cycle; i. e. ,  for each i, di is com­

puted from equation (42) following the previous similarity transformation. 
The result of the cycle is the same as a diagonal similarity transformation by 
the matrix, 

D = DNDN-l. . . Dl, (45) 

which has diagonal entries di of equation (42). Since a similarity transforma­

tion of the form Q I  ( Q # 0) leaves the matrix invariant, we normalize D by 
dividing each di by 5;i. e., setting di = di/$. Since the norm is mono­

tonically decreasing with each cycle, the norm converges and d’i -1 for all i 1 

in cycle k as k4 a;convergence implies Ri = Ci for all i and we see that the 

*For convenience in this discussion, we allow the mixed inequality 5 to mean 
reduced rather than the usual strict  inequality<. 
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algorithm has "balanced" the matrix. We have assumed implicity by using 
equation (42) that Ri # 0 and Ci # 0. If the matrix A is irreducible, this is 
surely the case; and Osborne shows, in addition, that irreducibility implies
that the df of each cycle is bounded by M independent of the cycle k. [See 

ref. [S] for this and other theoretical details.] 

We noted in discussing condition functions for the eigenvalue problem
that for the quantities si we had 1/ I sil 2 1. For the condition 

11 C-lll 11 Cll of equation (32), we have the inequality, 

If the matrix A is rea l  and symmetric, 1/ Isi! = 1 for all i and C can be 

chosen such that CTC = I, and hence 

Thus a symmetric matrix is well-conditioned (perfectly conditioned) with 
respect to the eigenvalue problem. 

For  an arbitrary rea l  matrix A, let  
i, j 

(a. -a..) 2 be ameasure  of 
l j  ~1 

icj 

the symmetry of A. Expanding, we find 

z (a..-a..)&= c a:. - 2 z a . .  a... (46) 
i, j 1 J  J 1  i f j  'J i, j 1J J 1  

i<j i-=j 

1 Under the sequence of diagonal similarity transformation used in Osborne' s 

algorithm, the quantity, 2 Z a. .  a..  remains a constant, while a? is 
i c j  1J  J1' i # j  1j

I 

the only part of the norm which changes and it must decrease unless it is al­i
1 

ready a minimum. Thus, Osborne' s sequence of similarity transformations 

makes Z (aij-a..)2 as small as possible; i. e., it makes the matrix as sym-
I i-=i" J 1
I metric a s  possible. Hence, there is reason to believe that this algorithm can 

be used to  condition real  matrices. 

2 1  




.- -...... 


Practical Algorithm 

A Fortran IV subroutine w a s  written to execute Osborne's algorithm
t

with the restriction that each di be of the form 2 (t integer), so that multi­

plication by di and l /d i  would be exact. Thus, after the quantity (Ci/Ri) 1 / 2  
t 

is computed, we wish to  find to such that I(Ci/Ri)-2 " 1  is a s  small a s  pos­

sible and such that we always have Q(1) - Q(2
to

) 5 0; i. e., the norm is al­
ways reduced. Figures l and 2 show there a re  two cases. 

One can easily verify that the following rule gives the desired d.:1 


(1) If Ci/Ri > 1, choose to such that ato ,C (Ci/Ri)lI2 and 
I((Ci/Ri) 1'2 - at.) minimum; 

L 

-

Q t  Q t ­

2 CiRi-- 2 CiRi ._ 

(Ci/ Ri) 1 / 2  (Ci/ Ri) 1 / 2  

1 I L I I , I : l . - - I 

1 

(2) If Ci/Ri C 1, choose to such that 2 2 (Ci/Ri)l12 and 
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We cycle until di = 1 for all i. Note that di = 1 if  (Ci/Ri)1'2 e(;, 2); 

i. e., if 1/4 Ci/Ri 4. If the matrix A may be irreducible, checks can be 

established to determine whether Ci = 0 or Ri = 0 or  di is so large (or small) 
that overflow may eventually occur. 

The Experiments 

An outline of the procedure used in the numerical experiments is given 
below. All  computing w a s  done on an IBM 7090. 

1. Various types of matrices with real  entries were generated; the en­
t r ies  were built with the use of the random number generator. The order 
of the matrices w a s  usually a random integer n with 5 n d 25. 

2. The eigenvalues of the matrix A generated as described in (1) are  
computed using Parlet t ' s  QR routine in double precision. N o  norm re ­
duction algorithm is used. The first eight digits of these double preci-

IIsion eigenvalues a re  regarded a s  the true" eigenvalues. 

3.  Next, the eigenvalues of A a re  computed using the QR routine in 
single precision. In addition to each eigenvalue, Xi, the condition num­
ber  1/ 1 si I is computed; the condition number routine is part of Par­
lett 's  program. No norm reduction is done. 

4. Finally, the matrix A is "balanced" (norm is reduced) using the 
algorithm described in the first two subsections. The eigenvalues of 
the balanced matrix and their condition numbers a re  computed in single 
precision, using the QR routine. 

By assuming that the double precision eigenvalues a re  accurate, we can 
investigate the results of norm reduction (by Osborne's algorithm). In addi­
tion, the condition numbers can be compared before and after using the al­
gorithm. 

Numerical Results 

The numerical results a r e  listed below: 
1 

1. Matrices have been found%?which show that the norm reduction al­
gorithm has resulted in a loss  of accuracy of the computed eigenvalues 
relative to the accuracy attained when \the eigenvalues were computed
without previous norm reduction. Cases have been found for which the 
loss  of accuracy w a s  severe. Of some, interest, but rather enigmatic, 
is the fact that there a re  examples where the sum of the condition num­

:::See Appendix A 
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bers,  I sil -l, of the eigenvalues decreases because of norm r e ­
1 

duction but where there is, nevertheless, loss  of accuracy. On the 

other hand, there a re  examples where the quantity, I s  I -',in­
1 

creases  but where the accuracy improves. In general, the conjecture
that norm reduction can be used to  condition matr ices  for  the eigen­
value problem by improving (or at least  not reducing) the accuracy of 
the computed eigenvalues appears to  be false. 

2. Matrices have been generated;': such that the quantities (Ci/Ri) of 
equations (39),  (40) and (421, i = 1, . . . n, a r e  initially large; that 
is ,  matrices were generated which were 1; unbalanced. 1 I  The matrices 
were generated (and tested) in a sequence such that successive matrices 
were (usually) more unbalanced than their antecedents. It w a s  found 
that a s  the matrices became more unbalanced, there was a point after 
which balancing always improved the accuracy of the eigenvalues. A s  
the matrices become very unbalanced (the upper triangular entries 
being many orders  of magnitude in absolute value greater than the low­
e r  triangular entries), substantial improvement in  the accuracy has 
been observed, as well a s  a decrease (orders  of magnitude) in the con­

dition numbers lsil -'. For only slightly unbalanced matrices, we find 

again sometimes a loss of accuracy. It appears that matrices can be 
conditioned using Osborne' s algorithm i f  they a re  poorly balanced, but 
the question of determining when a given matrix is poorly balanced r e ­
mains unan s wered. 

*See Appendix A 
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V. CONCLUDING REMARKS 

A s  mentioned in section 111, the purpose of conditioning is to find a new 
representation of the input vector X which appears to be l e s s  susceptible to 
roundoff error.  However, when we consider conditioning as described in sec­
tion I11 (Conditioning, No. 1) (as we did in the eigenvalue conditioning dis­
cussed in section IV), care must be taken in interpreting the results. For 
example, X may be data from physical measurements with a stated uncer­
tainty. If X is very ill-conditioned, the data may be physically meaningless 
because the uncertainty in X may be magnified to such a degree that the un­
certainty in F(X) is unsatisfactory. Thus, even though we may have been suc­
cessful in finding a T(X) whose condition is acceptable, the inherent e r r o r  and 
the condition of the data X render the computed results meaningless. While 
we look for means of conditioning the problem to avoid roundoff catastrophies, 
we must be aware of the inherent limitations of the problem, which we can in­
vestigate by perturbation-condition analysis. 

A common criticism of e r r o r  analysis which attempts to give an e r r o r  
bound a s  we have done is that the bounds a re  usually far too pessimistic, be­
ing very rarely, i f  ever, attained. Some of these cri t ics go further to say
that data arising from physical observations a re  usually well-conditioned and, 
i f  not, perhaps the problem can be 1 1  reformulated" to yield more computable 
data. The author finds such criticism naive but not totally unfounded. The 
whole crux of the matter is the detection of an ill-conditioned system - it is 

I 1only then that we know that we must t ry  to reformulate" the problem, and 
the price we must pay for this knowledge is the occasional (needless) con­
cern over problems for which the e r r o r  bound w a s  too pessimistic. This 
dilemma is difficult because, stated in another way, it is: how do we know 
the computed results a r e  definitely poor unless we know the true results? 

National Aeronautics and Space Administration 
Electronics Research Center 

I Cambridge, Massachusetts, Apr i l  1967 
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APPENDIX A 

Presented here a re  two examples of the numerical results discussed in Sec­
tion IV (Numerical Results). The first sample matrix is an example of 
severe loss of accuracy because of the balancing. The second sample matrix 
is one which is very unbalanced; the strictly lower triangular entries are  
much greater than the upper triangular entries. Note the additional digits 
of accuracy attained by using the balancing algorithm. 

I 
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iNPCrt M A T R I X  
EXAMPLE 1 

0.35638489E 03  0.16145126E 03 -0.12566398E 03 -0.88599348E 0 3  0.62476512E 03  -0.30674456E 0 3  -0.83073807E 02 

-0.78289724E 02 0.23951163E 03 -0.62719952E 02 -0.35411067E 03 -0.42182914E 02 

-0.45114718E 0 4  -0.20395140E 0 4  0.15801004E 04 0.11129711E 0 5  -0.78429864E 0 4  0.38562729E 0 4  0.10473419E 0 4  

0.98283312E 0 3  -0.30011729E 04 0.79401387E 03 0.44505269E 04 0.53011614E 0 3  

0.12119243E 05 0.54560247E 04 -0.42328444E 0 4  -0.29825178E 05 0.21017548E 05  -0.10333220E 05 -0.28044464E 04 

-0.26352130E 04 0.80450521E 04 -0.21276711E 0 4  -0.11922704E 05 -0.14206603E 04 

0.27190309E 02 0.11897345E 0 2  -0.96356463E 01 -0.65479804E 02 0.47097291E 02 -0.23019275E 02 -0.59740605E 01 

-0.57160737E 01 0.18281752E 02 -0.48664072E 01 -0.26273734E 02 -0.31401047E 0 1  

0.28785958E 04 0.12963992E 04 -0.10061981E 0 4  -0.70865974E 0 4  0.49952703E 0 4  -0.24549138E 0 4  -0.66661491E 03 

-0.62619318E 03 0.19113261E 04 -0.50539338E 03 -0.28333291E 04 -0.33757516E 03 

- 0 . i 6 i i 5 4 0 a ~  04 -0.72540471E 0 3  0.56289629E 03 0.39650581E 0 4  -0.27944886E 04 0.13750724E 0 4  0.37278906E 03 

0.35034536E 03 -0.10695694E 0 4  0.28284543E 03 0.15849654E 0 4  0.18086452E 0 3  

0.83809013E 0 3  0.37817148E 0 3  -0.29393447E 03 -0.20701668E 04 0.14589684E 0 4  -0.71730963E 0 3  -0.19821438E 03 

-0.18301350E 0'3 0.55816212E 03 -0.14752865E 03 -0.82fl16595E 03 -0.98605110E 0 2  
0.23866656E 05 0.10748441E 0 5  -0.83435334E 0 4  -0.58782556E 05 0.41427157E 05 -0.20364297E 05 -0.55268602E 04 

-0.51945000E 0 4 '  0.15fl58119E 05 -0.41893987E 04 -0.23501475E 0 5  -0.27995684E 04 

-0.41042699E 04 ' -0 .18476706E 0 4  0.14335596E 04 0.10096311E 05 -0.71148299E 0 4  0.34979820E 0 4  0.94952824E 03  

0.892339986 03 -0.27195816E 0 4  0.71997628E 03 0.40363073E 0 4  0.48095868E 0 3  

-0.12769685E 04 -0.57886086E 03 0.45005450E 03 0.31607834E 0 4  -0.22280816E 0 4  0.10959891E 0 4  0.29964358E 03 

0.27995189E 03 -0.85C84720E 0 3  0.22576849E 0 3  0.12676582E 04 0.15078770E 03 

-0.72778546E 04 -0.32772178E 0 4  0.25437483E 04 0.17918236E 05 -0.12626905E 05 0.62078913E 0 4  0.16850343E 04 

0.15829492E 04 -0.48331057E 0 4  0.12780191E 0 4  0.71631293E 04 0.85347079E 03 

-0.27941597E 04 -0.12579061E 0 4  0.97626848E 03 0.68775923E 0 4  -0.48466417E 0 4  0.23826951E 0 4  0.64658492E 03 

0.60753953E 03 -0.18 552938E 0 4  0.49053268E 03 0.27492572E 04 0 32738376E 03  



EXAMPLE 1 (Conc1'd.J 

EIGENVALUES CALCULATED I N  DOUBLE PRECISION 

REAL PbRT 

0.401792705E OC 
-0.509963576E 0 1  
-0.604646431E 0 1  

0.394218910E 0 1  
-0.279627556E 01 
-0.326782623E 0 1  

0.197149999E 00 
0.149078507E 0 1  
0.149078507E 0 1  

-0.187500820E 00 
0.137500040E 01 
0.137500040E 0 1  

EIGENVALUES WITHOUT 

REAL PbRT 

I M A G .  PAR1 

0. 

0. 

0. 

0. 

0. 

0. 

0. 
0.345800884E 

-0.345800884E 
0. 
0.374999166E 

-0.374999166E 
BALANCING 

00 
00 

00 
00 

0.402375504E 
-0.509902954E 
-0.604687929E 
-0.326759685E 

0.394199217E 
-0.279650316E 

0.197615832E 
-0.187748268E 

0.149038527E 
0.149038527E 
0.137540306E 
0.137540306E 

hCRH OF NATRIX 

KCRM OF FATRIX 

00 
0 1  
0 1  
01 
01 
0 1  
CO 
00 
C 1  
01 
0 1  
0 1  

IMAG. PART CON01 T ION 

0. 0. 0.8584E 05 
0. 0. 0.2032E 05  
0. 0. 0.2251E 05  
0. 0. 0.2671E 04 
0. 0. 0.3871E 04  
0. 4. 0.8919E 04  
0. 0. 0.8871E 05 
0. 0. 0.3517E 02 
0.343749814E 00 0. 0.6235E 04 

-0.343749814E 00 0. 0.6235E 04  
0.375006847F 00 0. 0.1704E 02 

-0.375006847E 00 6. 0.1704E 02 

REFORE BALANCING IS 

AFTER BALINCINC I S  

0.10247401E 0 6  

0.33216301E 05 

CONDITION 

0. 0.6540E 04 
0. 0.7160E 04 

00 0. 0.1859E 04  
00 0. 0.1859E 04  

5 .  0.1527E 04  
0. 0.2641E 04 
0. 0.7034E 04  

00 0. 0.2896E 04  
00 0. 0.2896E 04 
00 0. O.1704E 03 
00 8. 0.1704E 03 

4. 0.1955E 0 1  

hUHBER OF ITERATIONS I S  2 

EIGENVALUES WITH BALANCIhC 

REAL PIRT IHAG. PART 

-0.501171076E 01 0. 
-0.616425733E 01  0. 
-0.322168589E 0 1  0.219144911E 
-0.322168589E 0 1  -0.219144911E 

0.376535038E 01 0. 
-0.243426405E 00 0. 

0.164205085E 0 1  0. 
0.138336454E 01 0.380440623E 
0.138336454E 01 -0.380440623E 
0.137554485E 01  0.374816835E 
0.137554485E 0 1  -0.374816835E 

N 
W -0.187506415E 00 0. 



EXAMPLE 2 INPUT M A T R I X  

0.20534179E 00 0-26995898E-01 0-23325709E 00 0.24062909E 00 


0.33576850E-01 0.19991209E 00 0.24328492E 00 


0.21245116E 06 0.23341884E 00 0.21844812E 00 0.16164247E 00 


0.22345185E 00 0.19706641E 00 0123806258E 00 


0.24779558E 06 0.16688306E 06 0.24131398E 00 0.19525691E 00 


0.22165299E 00 0.24516963E 00 0.18962L75E 00 


' 0.25349575E 06 0.41620504E 04 0.22134913E 06 0.13148709E 00 

0.44725644E-01 0.19478413E 00 0a23976462E 00 

0.23517094E 06 O.25187844E 06 0.52169320E 05 0.25805557E 06 

0.16198951E 00 0.18457650E-01 0.16898105E 00 

0.25695612E 06 0.24228421E 06 0.26082554E 06 0.123997276 06 

0.24034906E 00 0.23658533E 00 0.17692248E 00 

0.25479692E 06 0.26205094E 06 0.71304652E 05 0.19951572E 06 

0.24578461E 00 0.79247677E-01 0.24110781E 00 

0.25984413E 06 3.19514402E 06 0.22799775E 06 0.25736469E 06 

0.73248468E-02 0 19210885E 00 0.22001022E 00 

0.50723074E 05 0.17599550E 06 0.22556002E 06 0.16345492E 06 

O m  10252068E 06 0.23561201E 00 0.18124361E 00 

0.1061781lE 06 0.26067284E 06 O.ll119850E 06 0.23683287E 06 

0.14954153E 06 0.16116306E 05 0.15830260E 00 


0.17364917E 00 0 6207080OE-01 0116660043E 00 


0.53367087E-01 0.24992852E 00 0.15882590E 00 


0.94949475E-01 0.24995166E 00 0.23829403E 00 


0.21086217E 00 0.15445005E 00 0.13714773E 00 


0.22557574E 00 0.11177813E 00 0.22068912E 00 


0.10409507E 06 0.16369920E 00 0-23841137E 00 


0.19003891E 06 0.10784204E 06 0.15791176E 00 


0.23466077E 04 0.26214354E 06 0.16980317E 06 


0.21440689E 06 0.15936756E 06 0.22995595E 06 


0.19474292E 06 0.25492097E 06 0.49862561E 04 




EXAMPLE 2 (Concl’d.) 

EIGENVALUES CALCULATED IM DOUBLE PRECISION 

REAL PART IMAG.  PART 

0.511875141E 05 0. 

0.312926280E 05 0.354121555E 05 

0.312926280E 05 -0.354121555E 05 


-0.491948261E 03 0.408799917E 05 

-0.491948261E 03 -0.40R799917E 05 

-0.232542987E 05 0.277514119E 05 

-0.232542987E 05 -0.277514119E 05  

-0.298245014E 05 0.671235547E 04 

-0.298245014E 05 -0.671235547E 04 

-0.662951226E 04 0. 


EfGENVALUES HITHnUT BALANCING 

REAL PART IMAG. PART CONDITION 

0.512044999E 05 0. 0. 0.1795E 05 

0.313256045E 05 0.354235762E 05 0. 0.1714E 05 

0.313256045E 05 -0.354235762E 05 3. 0.1714E 05 


-0.482451173E 03 0.409187326E 05 0. 0.1622E 05 

-0.482451173E 03 -0.409187326E 05 2. 0.1622E 05 

-0.232766110E 05 0.277814741E 05 0. 0.1615E 05 

-0.232766110E 05 -0.277814741E 0 5  2. 0.1615E 05 

-0.298520413E 05 0.671328710E 04 0. 0.1342E 05 

-0.298520413E 05 -0.671328710E 04 3. 0.1342E 05 

-0.663175803E 04 0. 4. 0.1374E 05 


NORM OF MATRIX BEFORE BALANCING I S  0.13120344E 0 7  

NORM OF M A T R I X  .AFTER RAL4NCING IS 0.23793905E 06 
NUMBER OF ITERATIONS IS 4 

EIGENVALUES H l T H  BALANCING 

REAL PART ICIAG. PARI CON01TION 

0.51 1874663E 05 0. 0. 0.6770E 01 

0.312925944E 05 0.354121301E 05 0. 0.6758E 01 

0.312925944E 05 -0.354121301E 0 5  3. 0.6758E 0 1  


-0.49194568 1 E  03 0.408799607E 05 0. 0.6776E 01 

-0.491945681E 03 -0.408799607E 05 2. 0.6776E 01 

-0.232542796E 05 0.277513863E 0 5  0. 0.6737E 01 

-0.232542796E 05 -0.2775138636 05 2. 0.6737E 0 1  

-0.298244845E 05 0.671235406E 0 4  0. 0.6170E 0 1  

-0.298244845E 05 -0.671235406E 0 4  4. 0.6170E 01 

-0.662951 139E 04 0. 3. 0.1425E 01 




“The aeronautical and space activities of the United States shall be 
conducted so us to contribute . , . to the expansion of human knowl­
edge of phenomena in the atmosphere and space. The Admittirtration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results tbereof!’ 

-NATIONAL h R 0 N A U n C S  AND SPACE ACX OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowldge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu­
tionbecause of preliminary data, security classification,or other reasons. 

CONTRACTOR REPORTS: Scientific and technical information generated 
under a NASA contract or grant and considered an important contribution to 
existing knowledge. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech­
nology used by NASA that may be of particular interest in commercial and other 
non-aerospace applications. Publications indude Tech Briefs, Technology 
Utilization Reports and Notes, and Technology Surveys. 

Details on the availability of these publications moy be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. PO546 
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